The circular wire in figure below encircles solenoid in which the magnetic flux is increasing at a constant rate out of the plane of the page. The clockwise emf around the circular loop is $\varepsilon_{0}$. By definition a voltammeter measures the voltage difference between the two points given by $V_{b}-V_{a}=-\int \limits_{a}^{b} E \cdot d s$ We assume that $a$ and $b$ are infinitesimally close to each other. The values of $V_{b}-V_{a}$ along the path $1$ and $V_{a}-V_{b}$ along the path $2$ , respectively are
$-\varepsilon_{0},-\varepsilon_{0}$
$-\varepsilon_{0}, 0$
$-\varepsilon_{0}, \varepsilon_{0}$
$\varepsilon_{0}, \varepsilon_{0}$
A sphere encloses an electric dipole with charge $\pm 3 \times 10^{-6} \;\mathrm{C} .$ What is the total electric flux across the sphere?......${Nm}^{2} / {C}$
$Assertion\,(A):$ A charge $q$ is placed on a height $h / 4$ above the centre of a square of side b. The flux associated with the square is independent of side length.
$Reason\,(R):$ Gauss's law is independent of size of the Gaussian surface.
An electric charge $q$ is placed at the centre of a cube of side $\alpha $. The electric flux on one of its faces will be
What is called Gaussian surface ?
${q_1},\;{q_2},\;{q_3}$ and ${q_4}$ are point charges located at points as shown in the figure and $S$ is a spherical Gaussian surface of radius $R$. Which of the following is true according to the Gauss’s law